Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons.

نویسندگان

  • John M Power
  • Pankaj Sah
چکیده

Glutamatergic synapses on pyramidal neurons are formed on dendritic spines where glutamate activates ionotropic receptors, and calcium influx via N-methyl-d-aspartate receptors leads to a localized rise in spine calcium that is critical for the induction of synaptic plasticity. In the basolateral amygdala, activation of metabotropic receptors is also required for synaptic plasticity and amygdala-dependent learning. Here, using acute brain slices from rats, we show that, in basolateral amygdala principal neurons, high-frequency synaptic stimulation activates metabotropic glutamate receptors and raises spine calcium by releasing calcium from inositol trisphosphate-sensitive calcium stores. This spine calcium release is unevenly distributed, being present in proximal spines, but largely absent in more distal spines. Activation of metabotropic receptors also generated calcium waves that differentially invaded spines as they propagated toward the soma. Dendritic wave invasion was dependent on diffusional coupling between the spine and parent dendrite which was determined by spine neck length, with waves preferentially invading spines with short necks. Spine calcium is a critical trigger for the induction of synaptic plasticity, and our findings suggest that calcium release from inositol trisphosphate-sensitive calcium stores may modulate homosynaptic plasticity through store-release in the spine head, and heterosynaptic plasticity of unstimulated inputs via dendritic calcium wave invasion of the spine head.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Methodological Differences in the Assessment of Dendritic Morphology of Basolateral Amygdala Principal Neurons—A Comparison of Golgi–Cox and Neurobiotin Electroporation Techniques

Quantitative assessments of neuronal subtypes in numerous brain regions show large variations in dendritic arbor size. A critical experimental factor is the method used to visualize neurons. We chose to investigate quantitative differences in basolateral amygdala (BLA) principal neuron morphology using two of the most common visualization methods: Golgi-Cox staining and neurobiotin (NB) filling...

متن کامل

Dendritic Morphology of Hippocampal and Amygdalar Neurons in Adolescent Mice Is Resilient to Genetic Differences in Stress Reactivity

Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated wit...

متن کامل

Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala.

The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are k...

متن کامل

Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala.

Recently identified cellular and molecular correlates of stress-induced plasticity suggest a putative link between neuronal remodeling in the amygdala and the development of anxiety-like behavior. Rodent models of immobilization stress, applied for 10 consecutive days, have been reported to enhance anxiety, and also cause dendritic elongation and spine formation in the basolateral amygdala (BLA...

متن کامل

Microsoft Word - 55363918-file00

31 Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated 32 fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new 33 treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes fear of 34 rats for cat odors, a change believed to be parasitic manipulation of host behavior aimed at 35 increasing p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 112 7  شماره 

صفحات  -

تاریخ انتشار 2014